- URL:https://<catalog-url>/System/GeoAnalytics
- Operations:Aggregate Points, Append Data, Build Multi-Variable Grid, Calculate Density, Calculate Field, Calculate Motion Statistics, Clip Layer, Copy to Data Store, Create Buffers, Create Space Time Cube, Describe Dataset, Detect Incidents, Dissolve Boundaries, Enrich from Multi-Variable Grid, Find Dwell Locations, Find Hot Spots, Find Point Clusters, Find Similar Locations, Forest-based Classification and Regression, Generalized Linear Regression, Geocode Locations, Geographically Weighted Regression, Group By Proximity, Join Features, Merge Layers, Overlay Layers, Reconstruct Tracks, Run Python Script, Snap Tracks, Summarize Attributes, Summarize Center and Dispersion, Summarize Within, Trace Proximity Events
- Version Introduced:10.5
Description
The GeoAnalytics Tools service contains a number of tasks that you can access and use in your apps. GeoAnalytics Tools are available in your ArcGIS Enterprise portal's Map Viewer Classic, ArcGIS Pro, API REST de ArcGIS, and ArcGIS API for Python. The categories are logical groupings and do not affect how you access or use the tasks in any way.
Tasks that summarize data
The tasks that summarize data are described in the following table:
Task | Description |
---|---|
Esta herramienta funciona con una capa de entidades de puntos y una capa de entidades de área. Las entidades de área de entrada pueden proceder de una capa de polígonos o pueden ser bins cuadrados o hexagonales que se calculan cuando se ejecuta la herramienta. Primero, la herramienta determina los puntos que se encuentran dentro de cada área especificada. Después de determinar esta relación espacial de punto en área, se calculan las estadísticas sobre los puntos del área y se asignan al área. La estadística más básica es el recuento del número de puntos dentro del área, pero se pueden obtener también otras estadísticas. | |
Esta herramienta genera una cuadrícula de bins cuadrados o hexagonales y calcula variables para cada bin basándose en la proximidad de una o varias capas de entrada. | |
The Describe Dataset task provides an overview of your big data. By default, the tool outputs a table layer containing calculated field statistics and a JSON string outlining geometry and time settings for the input layer. | |
The Join Features task works with two layers. Join Features joins attributes from one feature to another based on spatial, temporal, and attribute relationships or some combination of the three. The tool determines all input features that meet the specified join conditions and joins the second input layer to the first. You can optionally join all features to the matching features or summarize the matching features. | |
Esta herramienta trabaja con una capa con la función de tiempo habilitada de entidades de punto o de área que representan un instante en el tiempo. Primero determina qué entidades pertenecen a un recorrido utilizando un identificador. Utilizando el tiempo en cada ubicación, los recorridos se ordenan secuencialmente y se transforman en una línea o área que representa la ruta del movimiento en el tiempo. Opcionalmente, se puede crear una zona de influencia de la entrada mediante un campo, lo cual creará un área en cada ubicación. Estos puntos con zona de influencia o áreas de entrada se unen a continuación secuencialmente para crear un recorrido como área allí donde el ancho sea representativo del atributo de interés. Los recorridos resultantes tendrán un tiempo de inicio y finalización, que representarán, temporalmente, la primera y la última entidad en una determinada recorrido. Cuando se crean los recorridos, se calculan estadísticas sobre las entidades de entrada y se asignan al recorrido de salida. La estadística más básica es el recuento de puntos dentro del área, pero se pueden calcular también otras estadísticas. | |
Summarize Attributes takes an input layer and summarizes and calculates statistics on like values. The most basic statistic is the count of the number of features with a specified value, but you can get other statistics as well. | |
The SummarizeCenterAndDispersion task finds central features and directional distributions. It can be used to answer questions such as the following:
Nota:Summarize Center and Dispersion is not available in the ArcGIS Enterprise portal's Map Viewer Classic. Summarize Center and Dispersion is available through ArcGIS Pro and the ArcGIS Server REST API. | |
The Summarize Within task finds features (and portions of features) that are within the boundaries of areas in the first input layer. The following are examples:
|
Tasks that find locations
Task | Description |
---|---|
The Detect Incidents task works with a time-enabled layer of points, lines, areas, or tables that represents an instant in time. Using sequentially ordered features, called tracks, this tool determines which features are incidents of interest. Incidents are determined by conditions that you specify. First, the tool determines which features belong to a track using one or more fields. Using the time at each feature, the tracks are ordered sequentially and the incident condition is applied. Features that meet the starting incident condition are marked as an incident. You can optionally apply an ending incident condition; when the end condition is true, the feature is no longer an incident. The results will be returned with the original features with new columns representing the incident name and indicate which feature meets the incident condition. You can return all original features, only the features that are incidents, or all of the features within tracks where at least one incident occurred. | |
The Geocode Locations task geocodes a table from a big data file share. The task uses a geocode utility service configured with your portal. If you do not have a geocode utility service configured, talk to your administrator. Learn more about configuring a locator service. | |
The Find Dwell Locations task works with time-enabled points of type instant to find where points dwell within a specific distance and duration. | |
The Find Similar Locations task measures the similarity of candidate locations to one or more reference locations. |
Tasks that analyze patterns
Task | Description |
---|---|
The Calculate Density task creates a density map from point features by spreading known quantities of some phenomenon (represented as attributes of the points) across the map. The result is a layer of areas classified from least dense to most dense. | |
Create Space Time Cube works with a layer of point features that are time enabled. It aggregates the data into a three-dimensional cube of space-time bins. When determining the point in a space-time bin relationship, statistics about all points in the space-time bins are calculated and assigned to the bins. The most basic statistic is the number of points within the bins, but you can calculate other statistics as well. Nota:Create Space Time Cube is not available in the ArcGIS Enterprise portal's Map Viewer Classic. Create Space Time Cube is available through ArcGIS Pro and the ArcGIS Server REST API. | |
The Find Hot Spots task analyzes point data (such as crime incidents, traffic accidents, trees, and so on) or field values associated with points. It finds statistically significant spatial clusters of high incidents (hot spots) and low incidents (cold spots). Hot spots are locations with lots of points and cold spots are locations with very few points. | |
La herramienta Buscar clústeres de puntos encuentra clústeres de entidades de punto dentro del ruido colindante en función de su distribución espacial o espaciotemporal. | |
The Forest-based Classification and Regression task creates models and generates predictions using an adaptation of Leo Breiman's random forest algorithm, which is a supervised machine learning method. Predictions can be performed for both categorical variables (classification) and continuous variables (regression). Explanatory variables can take the form of fields in the attribute table of the training features. In addition to validation of model performance based on the training data, predictions can be made to another feature dataset. | |
This tool performs Generalized Linear Regression (GLR) to generate predictions or to model a dependent variable's relationship to a set of explanatory variables. This tool can be used to fit continuous (Gaussian and OLS), binary (logistic), and count (Poisson) models. | |
This tool performs GeographicallyWeightedRegression (GWR), which is a local form of linear regression used to model spatially varying relationships. |
Tasks that use proximity
The tasks that use proximity are described in the following table:
Task | Description |
---|---|
Las zonas de influencia se suelen utilizar para crear áreas que se pueden analizar más a fondo usando otras herramientas. Por ejemplo, si la pregunta es ¿Qué edificios están a 1 kilómetro del colegio?, la respuesta se puede encontrar creando una zona de influencia de 1 kilómetro en torno al colegio y superponiendo la zona de influencia con la capa que contiene las superficies de los edificios. El resultado final es una capa con los edificios que se encuentran a menos de 1 kilómetro del colegio. | |
The GroupByProximity tool groups features that are within spatial or spatiotemporal proximity of each other. Nota:Group By Proximity is not available in the ArcGIS Enterprise portal's Map Viewer Classic. Group By Proximity is available through ArcGIS Pro and the ArcGIS Server REST API. | |
The SnapTracks task matches track points to polylines and requires the following input layers:
Nota:Snap Tracks is not available in the ArcGIS Enterprise portal's Map Viewer Classic. Snap Tracks is available through ArcGIS Pro and the ArcGIS Server REST API. | |
The Trace Proximity Events task analyzes time-enabled point features representing moving entities. The task will follow entities of interest in space (location) and time to see which other entities the entities of interest have interacted with. The trace will continue from entity to entity to a configurable maximum degrees of separation from the original entity of interest. |
Tasks that enrich data
Task | Description |
---|---|
The Calculate Motion Statistics task calculates motion statistics and descriptors for time-enabled points that represent one or more moving entities. Points are grouped together into tracks representing each entity using a unique identifier. Motion statistics are calculated at each point using one or more points in the track history. Calculations include summaries of distance traveled, duration, elevation, speed, acceleration, bearing, and idle status. The result is a new point layer enriched with the requested statistics. | |
The EnrichFromMultiVariableGrid task joins attributes from a multivariable grid to a point layer. The multivariable grid must be created using the BuildMultiVariableGrid task. Metadata from the multivariable grid is used to efficiently enrich the input point features, making it faster than the Join Features task. Attributes in the multivariable grid are joined to the input point features when the features intersect the grid. |
Tasks that manage data
Task | Description |
---|---|
Esta herramienta incorpora datos a una capa de entidades alojada existente. Incorporar datos modifica la capa de entrada original y no genera una nueva capa de salida. Es posible coordinar los campos basándose en el nombre del campo y el tipo de campo, o bien es posible aplicar métodos de geocodificación más avanzados. | |
The Calculate Field task works with a layer to create and populate a new field or edit and existing field. The output is a new feature service that is the same as the input features, with the newly calculated values. | |
The Clip Layer task extracts input point, line, or polygon features that overlay the clip areas. The output is a subset of your input data based on the areas of interest. | |
The Copy To Data Store task takes an input layer and copies it to a data store. Data is copied to ArcGIS Data Store, configured as either a relational or spatiotemporal big data store. | |
The Dissolve Boundaries task finds polygons that intersect or have the same field values and merges them to form a single polygon. | |
The Merge Layers task combines two feature layers to create a single output layer. | |
Superponer capas combina dos o más capas en una. La superposición equivale a examinar una pila de mapas y crear un único mapa que contenga toda la información de la pila. La superposición es más que la fusión del trabajo de líneas; todos los atributos de las entidades que forman parte de la superposición se incluyen en el producto final. Capas de superposición se utiliza para responder a una de las preguntas geográficas más sencillas: ¿Qué está encima de qué? |